CAPÍTULO 6

ESCOAMENTO SUPERFICIAL

6.1. Introdução

Das fases básicas do ciclo hidrológico, talvez a mais importante para o engenheiro seja a do escoamento superficial, que é a fase que trata da ocorrência e transporte da água na superfície terrestre, pois a maioria dos estudos hidrológicos está ligada ao aproveitamento da água superficial e à proteção contra os fenômenos provocados pelo seu deslocamento.

Como já foi visto a existência de água nos continentes é devida à precipitação. Assim, da precipitação que atinge o solo, parte fica retida quer seja em depressões quer seja como película em torno de partículas sólidas. Quando a precipitação já preencheu as pequenas depressões do solo, a capacidade de retenção da vegetação foi ultrapassada e foi excedida a taxa de infiltração, começa a ocorrer o escoamento superficial. Inicialmente, formam-se pequenos filetes que escoam sobre a superfície do solo até se juntarem em corredeiras, canais e rios. O escoamento ocorre sempre de um ponto mais alto para outro mais baixo, sempre das regiões mais altas para as regiões mais baixas até o mar.

O processo do escoamento inclui uma série de fases intermediárias entre a precipitação e o escoamento em rios. Para entender o processo do escoamento é necessário entender cada uma destas fases. Esta següência de eventos é chamada de ciclo do escoamento.

6.2. Ciclo do Escoamento

O ciclo do escoamento pode ser descrito em três fases: na primeira fase o solo está seco e as reservas de água estão baixas; na fase seguinte, iniciada a precipitação, ocorrem interceptação, infiltração e escoamento superficial; na última fase o sistema volta a seu estado normal, após a precipitação. Fatores como tipo de vegetação, tipo de solo, condições topográficas, ocupação e uso do solo, são fatores que determinam a relação entre vazão e precipitação. A seguir, são descritas as fases do ciclo do escoamento superficial em uma região úmida.

1^a Fase:

Após um período de estiagem, a vegetação e o solo estão com pouca umidade. d'água Os cursos existentes estão sendo alimentados pelo lençol d'água subterrâneo que mantém a vazão de base dos cursos d'água. Ouando uma precipitação se inicia, boa parte da água é interceptada pela vegetação, e a chuva que chega ao chão é infiltrada no solo. Exceto pela parcela de chuva que cai diretamente sobre o curso d'água, não existe nenhuma contribuição para escoamento nesta fase. Parte da água retida pela vegetação é evaporada

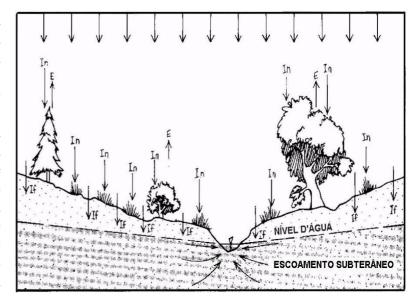


Fig. $6.1 - 1^{\frac{a}{2}}$ Fase do ciclo do escoamento

2^a Fase:

Com a continuidade da precipitação, a capacidade de retenção vegetação é esgotada, e a água cai sobre o solo. Se a precipitação persistir, a capacidade de infiltração do solo pode ser excedida, e a água começa a se acumular depressões rasas, que em seguida se unem formando um filme de água sobre o solo, começando, então, a mover-se como escoamento superficial, na direção de um curso d'água. A água infiltrada no solo começa a percolar na direção dos aquiferos subterrâneos. Finalmente, se a chuva continuar, o escoamento superficial ocorrerá de forma contínua, na direção de um rio.

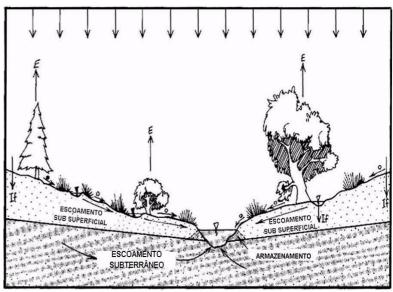


Fig. $6.2 - 2^{\underline{a}}$ Fase do ciclo do escoamento

O nível do lençol freático poderá subir, fornecendo uma contribuição extra de água subterrânea ao escoamento.

Na maioria dos casos, a contribuição das águas subterrâneas para o escoamento superficial, devido à recarga pela chuva, ocorre quando a precipitação já cessou, devido à baixa velocidade do escoamento subterrâneo.

3^a Fase:

Quando a precipitação pára, o escoamento superficial rapidamente cessa, a evaporação e a infiltração continuam a retirar água da vegetação e de poças na superfície do solo. O nível do rio está agora mais alto do que no início da precipitação. A água que se infiltrou nas margens do rio, lentamente é liberada, na medida em que o nível do rio baixa até o nível em que permanece nos períodos secos.

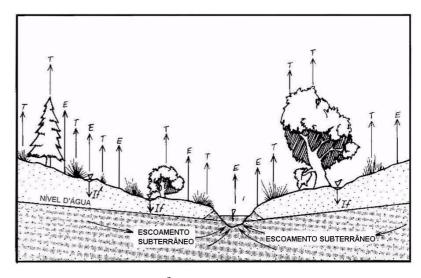


Fig. $6.3 - 3^{\underline{a}}$ Fase do ciclo do escoamento

O ciclo do escoamento em uma região árida ou semi-árida é diferente do que ocorre em uma região úmida. Nas regiões árida e semi-árida, a água subterrânea costuma estar em camadas muito profundas do solo, bem abaixo do leito dos rios. Por isso, a maior parte da vazão dos rios depende apenas da precipitação e, como longos períodos de estiagem separam os períodos chuvosos, os rios são intermitentes.

6.3. Representação do Escoamento Através do Hidrograma

A vazão, ou volume escoado por unidade de tempo, é a principal grandeza que caracteriza o escoamento. Normalmente é expressa em m³/s ou em l/s. O hidrograma é a denominação dada ao gráfico que relaciona a vazão no tempo. A distribuição da vazão no tempo é resultado da interação de todos os componentes do ciclo hidrológico entre a ocorrência da precipitação e a vazão na bacia hidrográfica.

O comportamento do hidrograma típico de uma bacia, após a ocorrência de uma sequência de precipitações é apresentado na Figura 6.5. Verifica-se que após o início da chuva, existe um intervalo de tempo em que o nível começa a elevar-se. Este tempo retardado de resposta deve-se às perdas iniciais por interceptação vegetal e depressões do solo, além do próprio retardo de resposta da bacia devido ao tempo de deslocamento da água na mesma.

O hidrograma atinge o máximo, de acordo com a distribuição de precipitação, e apresenta a seguir a recessão onde se observa normalmente, um ponto de inflexão. Este ponto caracteriza o fim do escoamento superficial e a predominância do escoamento subterrâneo. O primeiro ocorre num meio que torna a resposta rápida, finalizando antes do escoamento subterrâneo que por escoar pelo solo poroso apresenta um tempo de retardo maior. Na Figura 6.5 é esboçado o comportamento da vazão subterrânea.

A contribuição da vazão subterrânea é influenciada pela infiltração na camada superior do solo, sua percolação e conseqüente aumento do nível do aquífero. Essa elevação rápida do nível provoca a inversão de vazão ou represamento do fluxo no aquífero na vizinhança com o rio. Isso é observado na Figura 6.5 pela linha tracejada. O processo começa a inverter-se quando a percolação aumenta e o fluxo superficial diminui.

A forma do hidrograma depende de um grande número de fatores, os mais importantes são:

relevo (densidade de drenagem, declividade do rio ou bacia, capacidade de armazenamento e forma): uma bacia com boa drenagem e grande declividade apresenta um hidrograma íngreme com pouco escoamento de base. Normalmente as cabeceiras das bacias apresentam essas características. As bacias com grande área de inundação tendem a amortecer o escoamento e regularizar o fluxo.

A forma da bacia influencia o comportamento do hidrograma, como pode ser observado na Figura 6.4d. Uma bacia do tipo radial concentra o escoamento, antecipando e aumentando o pico com relação a uma bacia alongada, que tem escoamento predominante no canal principal e percurso mais longo até a seção principal, amortecendo as vazões;

cobertura da bacia: a cobertura da bacia, como a vegetal, tende a retardar o escoamento e aumentar as perdas por evapotranspiração. Nas bacias urbanas, onde a cobertura é alterada, tomando-se mais impermeável, acrescida de uma rede de drenagem mais eficiente, o escoamento superficial e o pico aumentam. Este acréscimo de vazão implica o aumento do diâmetro dos condutos pluviais e dos custos;

modificações artificiais no rio: o homem produz modificações no rio para o uso mais racional da água. Um reservatório para regularização da vazão tende a reduzir o pico e distribuir o volume (Figura 6.4b), enquanto a canalização tende a aumentar o pico, como mostra a bacia urbana;

distribuição, duração e intensidade da precipitação: a distribuição da precipitação e sua duração são fatores fundamentais no comportamento do hidrograma. Quando a precipitação se concentra na parte inferior da bacia, deslocando-se posteriormente para montante, o hidrograma pode ter até dois picos. Na figura 6.4c são apresentados dois tipos de distribuição

temporal de precipitação, onde se observa que quando a precipitação é constante, a capacidade de armazenamento e o tempo de concentração da bacia são atingidos, estabilizando o valor do pico. Após o término da precipitação, o hidrograma entra em recessão.

solo: as condições iniciais de umidade do solo são fatores que podem influenciar significativamente o escoamento resultante de precipitações de pequeno volume, alta e média intensidade. Quando o estado

de umidade da cobertura vegetal, das depressões, da camada superior do solo e do aqüífero forem baixos, parcela ponderável da precipitação é retida e o hidrograma é reduzido.

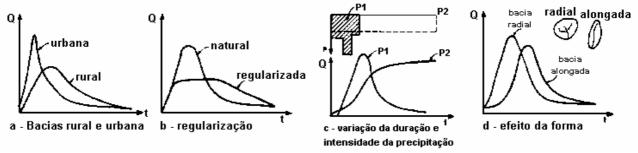


Fig. 6.4 – Comportamentos do hidrograma

Para caracterizar o hidrograma e o comportamento da bacia são utilizados alguns valores de tempo (abcissa), relacionados a seguir:

tp: tempo do pico: é definido como o intervalo entre o centro de massa da precipitação e o tempo de pico;

te: tempo de concentração: é o tempo necessário para a água precipitada no ponto mais distante na bacia, deslocar-se até a seção principal. Esse tempo é definido também como o tempo entre o fim da precipitação e o ponto de inflexão do hidrograma; te: tempo de recessão: é o tempo necessário para a vazão baixar até o ponto C (Figura 6.5), quando acaba o escoamento superficial.

tb: tempo de base: é o tempo entre o inicio da precipitação e aquele em que a precipitação ocorrida já escoou através da seção principal, ou que o rio volta às condições anteriores à da ocorrência da precipitação;

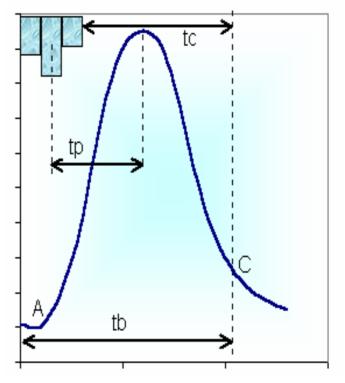


Fig. 6.5- Hidrograma Tipo

O hidrograma pode ser caracterizado por três partes principais: *ascensão*, altamente correlacionada com a intensidade da precipitação, e com grande gradiente; *região do pico*, próximo ao valor máximo, quando o hidrograma começa a mudar de inflexão, resultado da redução da alimentação de chuvas e/ou amortecimento da bacia. Esta região termina quando o escoamento superficial acaba, resultando somente o escoamento subterrâneo; *recessão*, nesta fase, somente o escoamento subterrâneo está contribuindo para a vazão total do rio.

O escoamento superficial, que caracteriza as duas primeiras partes do hidrograma pode ser descrito por modelos hidrológicos. Para simular o escoamento superficial é necessário separá-lo do escoamento subterrâneo e obter a precipitação efetiva que gerou o escoamento.

A recessão identificada pelo escoamento subterrâneo pode ser representada por uma equação exponencial do tipo seguinte:

$$Q_{t} = Q_{0} \cdot e^{-\alpha . t}$$

(6.1)

onde Qt = a vazão após t intervalos de tempo; $Q_0 = vazão$ no tempo de referência zero; $\alpha =$ coeficiente de recessão. Este coeficiente pode ser determinado através da plotagem num papel log-log dos valores de vazão, defasados de t intervalos de tempo. A declividade da reta permite estimar o valor de α .

6.4. Separação do Escoamento Superficial

Os escoamentos são em geral definidos em: superficial, que representa o fluxo sobre a superficie do solo e pelos seus múltiplos canais; subsuperficial, que alguns autores definem como o fluxo que se dá junto às raízes da cobertura vegetal e; subterrâneo, que é o fluxo devido à contribuição do aqüífero. Em geral, os escoamentos superficial e subterrâneo correspondem a maior parte do total, ficando o escoamento subsuperficial contabilizado no superficial ou no subterrâneo. Para que os mesmos sejam analisados individualmente é necessário separar no hidrograma a parcela que corresponde a cada tipo de fluxo.

A parcela de escoamento superficial pode ser identificada diretamente do hidrograma observado por métodos gráficos que se baseiam na análise qualitativa apresentada no item anterior. A precipitação efetiva que gera o escoamento superficial é obtida quando não se dispõe dos dados observados do hidrograma ou deseja-se determinar os parâmetros de um modelo em combinação com o hidrograma do escoamento superficial. Na Figura 6.6 são apresentados três métodos gráficos tradicionalmente usados.

Método 1: extrapole a curva de recessão a partir do ponto C até encontrar o ponto B, localizado abaixo da vertical do pico. Ligue os pontos A, B e C. O volume acima da reta ABC é o escoamento superficial e o volume abaixo é o escoamento subterrâneo;

Método 2: este é o método mais simples, pois basta ligar os pontos A e C por uma reta;

Método 3: o método consiste em extrapolar a tendência anterior ao ponto A até a vertical do pico, encontrando o ponto D. Ligando os pontos D e C obtém-se a separação dos escoamentos.

Um método alternativo aos anteriores é o seguinte: (Figura 6.5) prolongue a tendência do hidrograma antes do ponto A até o ponto B, abaixo do pico e da recessão a partir de C. Desenhe a curva restante definindo o ponto D. O ponto A é caracterizado pelo início da

ascensão do hidrograma, ou do escoamento superficial. O ponto C é caracterizado pelo término do escoamento superficial e inicio da recessão.

Para a determinação do ponto C existem vários critérios, a seguir relacionados: a) método de Linlsey

$$N = 0.872 \cdot A^{0.2} \tag{6.2}$$

onde N = tempo entre o pico do hidrograma e o tempo do ponto C, em dias; A é a área da bacia em km²;

- b) o tempo entre a última precipitação e o ponto C, que termina o escoamento superficial é o tempo de concentração. Utilizando uma das equações para determinar o tempo de concentração, é possível estimar aproximadamente o ponto C. O valor obtido pode não estar em concordância com o hidrograma observado, mas permite diminuir dúvidas entre mais de um ponto de inflexão, escolhido visualmente;
- inspeção é c) a visual um dos procedimentos mais simples e se baseia na plotagem das vazões numa escala mono-log, (vazão na escala logarítmica). recessão tende a seguir uma equação exponencial, numa escala logarítmica a mesma tende para uma reta. Quando ocorre modificação substancial da declividade da reta de recessão, o ponto C é identificado. Frequentemente ocorre mais de uma mudança de inclinação da reta, o que pode caracterizar também o escoamento subsuperficial, retardado de diferentes partes da bacia ou o efeito de diferentes camadas dos aquíferos.

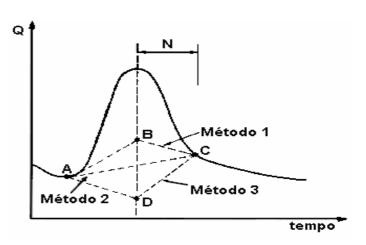


Fig.6.6 – Métodos de separação gráfica

A precipitação efetiva é a parcela do total precipitado que gera o escoamento superficial. Para obter o hietograma correspondente à precipitação efetiva é necessário retirar os volumes evaporados, retidos nas depressões e os infiltrados, utilizando-se as metodologias discutidos nos Capítulos 4 e 5.

6.5. Coeficiente de Escoamento Superficial (C)

O coeficiente de escoamento superficial ou coeficiente de deflúvio, ou ainda, coeficiente de "runoff", é definido como a razão entre o volume de água escoado superficialmente e o volume de água precipitado. Este coeficiente pode ser relativo a uma chuva isolada ou relativo a um intervalo de tempo onde várias chuvas ocorreram.

É claro que, conhecendo-se o coeficiente de "runoff" para uma determinada chuva intensa de uma certa duração, pode-se determinar o escoamento superficial de outras precipitações de intensidades diferentes, desde que a duração seja a mesma. Este procedimento é muito usado para se prever a vazão de uma enchente provocada por uma chuva intensa.

6.6. Estimativa do Escoamento Superficial Através de Dados de Chuva

A vazão máxima pode ser estimada com base na precipitação, por métodos que representam os principais processos da transformação da precipitação em vazão e pelo método racional, que engloba todos os processos em apenas um coeficiente (C).

O método racional é largamente utilizado na determinação da vazão máxima para bacias pequenas (≤ 2 km²). Os princípios básicos desta metodologia são: a) considera a duração da precipitação intensa de projeto igual ao tempo de concentração. Ao considerar esta igualdade admite-se que a bacia é suficientemente pequena para que esta precipitação ocorra, pois a duração é inversamente proporcional à intensidade. Em bacias pequenas, as condições mais críticas ocorrem devido a precipitações convectivas que possuem pequena duração e grande intensidade; b) adota um coeficiente único de perdas, denominado C, estimado com base nas características da bacia; c) não avalia o volume da cheia e a distribuição espacial de vazões.

Fórmula Racional

Da definição de coeficientes de deflúvio, pode-se escrever:

O numerador representa o volume escoado por unidade de tempo e o denominador representa o

volume precipitado por unidade de tempo. Então, a vazão (Q) corresponde a uma chuva de intensidade

(i) sobre toda a área de drenagem (A), chuva esta que dure um tempo tal que toda que toda a área da bacia contribua para o escoamento, será dada por:

$$Q = C \cdot i \cdot A \tag{6.4}$$

Se i é dado em mm/h, A em km² e se deseja Q em m³/s, a fórmula racional, ou equação (6.4), fica:

$$Q = 0.278C \cdot i \cdot A \tag{6.5}$$

A aplicação da fórmula racional, depende do conhecimento do coeficiente de deflúvio C. Existem tabelas que relacionam o coeficiente de escoamento superficial com a natureza da superfície onde ela ocorre. Ver a Tabela 6.1.

Natureza da Superfície	Valores de C
Telhados perfeitos, sem fuga	0,70 a 0,95
Superficies asfaltadas e em bom estado	0,85 a 0,90
Pavimentações de paralelepípedos, ladrilhos ou blocos de madeira com juntas bem tomadas	0,75 a 0,85
Para as superficies anteriores sem as juntas tomadas	0,50 a 0,70
Pavimentações de blocos inferiores sem as juntas tomadas	0,40 a 0,50
Estradas macadamizadas	0,25 a 0,60
Estradas e passeios de pedregulho	0,15 a 0,30
Superfícies não revestidas, pátios de estrada de ferro e terrenos descampados	0,10 a 0,30
Parques, jardins, gramados e campinas, dependendo da declividade do solo e natureza do subsolo	0,01 a 0,20

Tabela 6.1 - Valores do coeficiente de deflúvio (c), extraída do manual de técnica de bueiros e drenos da ARMCO.

Pode-se também calcular o valor de C para uma chuva de características conhecidas, desde que se conheça a variação de vazão correspondente.

Exemplo: Dada a Tabela 6.2, com dados de vazão e sabendo-se os valores da área de drenagem (A=115.10⁶ m²) e da altura de chuva (h=160 mm), procede-se da seguinte forma para calcular o coeficiente de deflúvio:

Dia	Hora	Vazão (m3/s)	Dia	Hora	Vazão (m3/s)
	0	12,1		0	30,2
1	6	18,2	4	6	21,5
	12	30		12	19,2
	18	52		18	18,2
	0	58		0	17,3
2	6	63,5	5	6	15,5
	12	55		12	14
	18	46,3		18	10,5
	0	43,3			
3	6	32,8			
	12	27,7			
	18	29,8			

Tabela 6.2 - Dados de vazão

Com os dados de vazão acima traça-se a hidrógrafa, e a partir desse gráfico traça-se a reta que separa o escoamento superficial direto do escoamento básico (reta AC referida no item 6.4). Esta reta tem o seu ponto inicial numa mudança brusca na inclinação da curva de vazão (início do escoamento superficial) e o seu ponto final no ponto de máxima curvatura e, sempre, relativo a um período igual a um número inteiro de dias ou pelo menos um ponto imediatamente superior que satisfaça esta segunda condição. Obtém-se, agora, o escoamento de base a partir de leitura direta do gráfico, conforme representado na tabela Assim obtemos 0 escoamento superficial e, a partir do cálculo da área compreendida entre a reta e o hidrograma, o volume escoado.

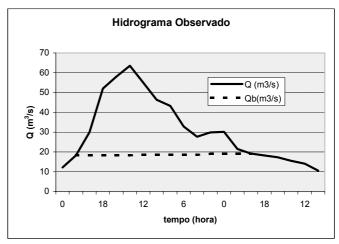


Fig. 6.7 – Hidrograma referente aos dados da Tabela 6.2

Dia	Hora	Vazão	Qb	Qe
		(m3/s)	(m3/s)	(m3/s)
	0	12,1	12,1	0
1	6	18,2	12,82	5,38
	12	30	13,54	16,46
	18	52	14,26	37,74
	0	58	14,98	43,02
2	6	63,5	15,7	47,8
	12	55	16,42	38,58
	18	46,3	17,14	29,16
	0	43,3	17,86	25,44
3	6	32,8	18,58	14,22
	12	27,7	19,3	8,4
	18	29,8	20,02	9,78
	0	30,2	20,74	9,46
4	6	21,5	21,46	0,04
	12	19,2	19,2	0
	18	18,2	18,2	0
	0	17,3	17,3	0
5	6	15,5	15,5	0
	12	14	14	0
	18	10,5	10,5	0

Tabela 6.3 – Separação do escoamento

Para esse exemplo obtemos o seguinte valor :

$$Ve = 6.166.368,00m^3$$

O cálculo do volume precipitado é feito através da seguinte relação:

$$Vp = A \times h$$

$$Vp = 115 \cdot 10^6 \cdot 0,160 = 18.400.000,00 \text{ m}^3$$

Tendo os valores do volume escoado e o volume precipitado teremos :

$$C=Ve/Vp$$
 $C=6.166.368,00m3/(18.400.000,00 m3)=0.34$

Apesar de representar aproximação relativamente grosseira, pois o valor de C calculado para a bacia em questão, estritamente, só serviria para a chuva e condições para as quais foi calculado, a fórmula racional, com o valor calculado do coeficiente de deflúvio poderia ser utilizada para outras intensidades com duração tal que toda a bacia contribua.

6.7. Hidrograma Unitário

As três seguintes proposições, simplificadamente, dão os princípios fundamentais que regem as relações entre chuva e deflúvio para chuvas de distribuição uniforme e de intensidade constante sobre toda a bacia de drenagem:

- a) para chuvas de iguais durações, as durações dos escoamentos superficiais correspondentes são iguais.
- b) duas chuvas da mesma duração, mas com volumes escoados diferentes, resultam em hidrógrafas cujas ordenadas são proporcionais aos correspondentes volumes escoados.
- c) considera-se que as precipitações anteriores não influenciam a distribuição no tempo do escoamento superficial de uma dada chuva.

Baseado nestes princípios fundamentais, introduziu-se a chamada hidrógrafa unitária que é ferramenta útil na transformação de dados de chuva em vazões. Chama-se hidrógrafa unitária a hidrógrafa resultante de um escoamento superficial de volume unitário.

Esse conceito, acoplado às três proposições anteriores, fornece a possibilidade de considerar a hidrógrafa unitária como uma característica da bacia. Dada a hidrógrafa unitária, a qualquer chuva de intensidade uniforme, de duração igual àquela da hidrógrafa unitária (normalmente adotada igual à duração critica para cálculo de enchentes), pode-se calcular as ordenadas da hidrógrafa do escoamento superficial correspondente.

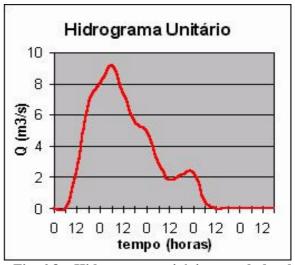


Fig. 6.8 – Hidrograma unitário para dados do Exemplo 6.1

O volume de escoamento superficial unitário normalmente adotado é de 1 cm de altura de água sobre toda a bacia. Pelo procedimento mostrado no item 6.5, calcula-se o valor do coeficiente de deflúvio.

Assim, chamando de Qu a vazão do escoamento superficial correspondente à hidrógrafa unitária, Qe a vazão do escoamento superficial correspondente à vazão medida, h a altura média da chuva medida (em centímetros) pelos princípios antes enunciados, tem-se:

$$\frac{Q_u}{Q_e} = \frac{i \cdot A}{C \cdot h \cdot A} \tag{6.6}$$

$$Q_u = \frac{Q_e}{C \cdot h} \tag{6.7}$$

Duração da Chuva: basicamente para cada duração de chuva tem-se uma hidrógrafa unitária. É claro que, devido ao fato de o escoamento superficial ser constante e igual a 1 cm, a vazão de pico de uma hidrógrafa unitária será tanto maior quanto menor a duração da chuva e o tempo base de escoamento será tanto menor quanto menor for a duração da chuva.

Entretanto, não haverá grande diferença no estabelecimento da hidrógrafa unitária se as durações das chuvas não diferirem muito; podendo-se admitir como aceitável, uma tolerância de 25% na duração estabelecida da chuva.

Tempo de Retardamento da Bacia ("Basin Lag"): duas definições são usadas para tempo de retardamento da bacia:

- a) tempo entre o baricentro da distribuição da chuva e o baricentro da distribuição do escoamento superficial.
- b) tempo entre o baricentro da distribuição da chuva e o pico do diagrama do escoamento superficial.

E claro que esta última definição é mais simples de ser aplicada, e que as duas definições levam a valores não muito diferentes.

Duração da Chuva a ser Adotada para o Estabelecimento da Hidrógrafa Unitária: normalmente, a duração da chuva a ser adotada para o estabelecimento da hidrógrafa unitária seria o mínimo valor para o qual toda a bacia contribuiu para o escoamento superficial. Entretanto, não se conhecendo esta duração chamada de "crítica", pode-se adotar, um quarto do tempo de retardamento da bacia.

Adotando-se uma duração menor que a crítica, constrói-se uma hidrógrafa unitária que poderá servir de base para o estabelecimento de outras hidrógrafas unitárias para maiores durações. É claro que se deslocando uma hidrógrafa unitária de um tempo t e somando-se à hidrógrafa unitária de duração to, tem-se uma hidrógrafa de duração (t + to) com 2 cm de escoamento superficial. Dividindo-se por 2 as ordenadas desta última hidrógrafa, tem-se a hidrógrafa unitária de duração (t + to).

Adotou-se aqui o termo duração da hidrógrafa unitária para a duração da chuva para a qual esta hidrógrafa unitária foi construída. Nada tem esse conceito a ver com duração do escoamento superficial da hidrógrafa unitária ou de qualquer hidrógrafa dela deduzida.

6.8. Hidrograma Unitário Sintético

A situação mais frequente, na pratica, é o da existência de dados históricos. Os hidrogramas unitários sintéticos foram estabelecidos com base em dados de algumas bacias, e são utilizados quando não existem dados que permita estabelecer o HU.

Os métodos de determinação do HU baseiam-se na determinação do valor de algumas abcissas, como o tempo de pico e o tempo de base, e das ordenadas como a vazão de pico. A regionalização destas variáveis com base em características físicas tem permitido estimar o HU para um local sem dados observados.

Snyder:

Snyder (1938) foi um dos primeiros a estabelecer um HU sintético com dados dos Apalaches (USA) com bacias de 10 a 10.000 mi² de área de drenagem. Esse método consiste na confecção de um gráfico, tendo como base os fatores descritos abaixo:

Tempo de pico:

$$t_p = C_t \left(L L_e \right)^{0.3} \quad \text{(horas)}$$

onde L = comprimento do rio principal (Km); L_{e} = é a distancia da seção principal ao ponto do rio mais próximo do centro de gravidade da bacia (Km); C_{t} = coeficiente que varia entre 1,35 a 1,65;

O tempo de duração da precipitação, calculado por:

$$t_{\rm r} = \frac{t_{\rm p}}{5.5}$$
 (horas) (6.9)

Se a precipitação estudada tiver duração t_R superior a duração tr calculada, o valor tp deverá ser substituído por:

$$t_{p}^{r} = t_{p} + \frac{(t_{R}^{r} - t_{r})}{\Delta}$$
 (horas) (6.10)

A vazão de pico para uma precipitação de duração **tr** e volume 1 cm fica:

$$Q_p = \frac{2,75 \, C_p \, A}{t_p}$$
 (ou tp' se for o caso) (m³/s) (6.11)

onde A= área de drenagem em Km²; Cp= coeficiente que varia entre 0,56 e 0,69.

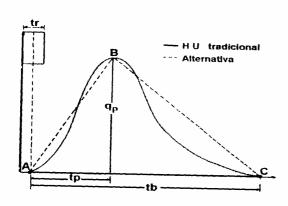


Fig. 6.9 - HU Sintético Snyder

Na literatura vários autores tem aplicado semelhante procedimento em diferentes partes dos Estados Unidos obtendo valores de Cp e Ct com intervalos de variação superior ao indicado. O coeficiente Ct tem influência sobre o tempo de pico e depende das outras características físicas. Para bacias próximas com características físicas semelhantes pode-se usar dados de bacias vizinhas para a estimativa desses coeficientes.

O tempo de base do hidrograma unitário é estimado por:

$$t_b = 3 + 3 \cdot \left(\frac{t_p}{24}\right)$$
 (ou tp' se for o caso) (dias) (6.12)

Esse valor fica irreal para bacias muito pequenas.

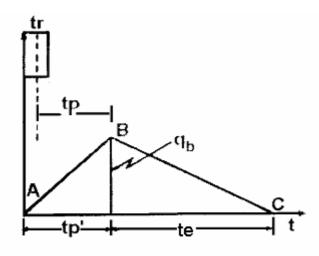
Com base em Qp, tp e tb, o HU é esboçado, procurando manter o volume unitário (Figura 6.9).

Exemplo: determine o hidrograma unitário sintético pelo método de Snyder para uma bacia com os seguintes dados: A=115 Km²; L=29,5 Km; Lc=5Km. Adote Ct=1,50 e Cp=0,625.

Solução:

- Tempo de pico tp=Ct (Lc x L)^{0,3} tp=(1,50) [(29,5/2) x 29,5]^{0,3} \rightarrow tp=9,31 hs
- Tempo de duração da precipitação (tr) tr=tp/5,5
 tr=9,31/5,5 → tr=1,69 hs

Como tr $(1,69) < t_R(10,50)$ corrigiremos o valor de tp para tp'.


• Tempo de atraso (tp') tp'=tp+ ($t_R - tr$)/4 tp'=9,31 + [(10,50 - 1,69)/4] \rightarrow tp'=11,51 hs

- Cálculo de vazão de pico (Qp) Qp=2,76 Cp (A/tp') Qp=2,76 0,625 (115/11,51) → Qp=17,23 m³/s
- Cálculo do Tempo de Base do Escoamento (T) T=3+3 ($tp^2/24$) T=3+3 (11,51/24) \rightarrow T=4,44 dias

Deve-se procurar desenhar a curva, mantendo a altura de chuva unitária, sendo um trabalho de tedioso e sujeito a variadas interpretações. Esse procedimento é ajustado através do calculo da área do gráfico, obtendo-se, assim, o volume escoado, que para transformar em lâmina d'água (altura de chuva unitária) divide-se pela área da bacia. Deve-se ter o cuidado de observar a compatibilização das unidades.

SCS

O Soil Conservation Service (SCS,1957) apresentou um método para determinação do hidrograma unitário em que o mesmo é considerado um triângulo como se vê na Figura 6.10. A área do triângulo é igual ao volume precipitado Q, ou seja:

$$\frac{Q_p \cdot t_p'}{2} + \frac{Q_p \cdot t_e}{2} = Q \tag{6.13}$$

$$Q_p = \frac{2 \cdot Q}{t_p' + t_e} \tag{6.14}$$

sendo
$$te = H \times Tp$$
 (6.15)

A equação acima fica:

$$Q_{p} = \frac{2 \cdot Q}{(H+1) \cdot t_{p}'} \tag{6.16}$$

Os autores adotaram H=1,67 com base na observação de várias bacias.

Fig. 6.10 - Hidrograma triângular SCS

Para uma precipitação de 1 cm, sobre a área A, em Km², tp' em horas, a equação da vazão fica:

$$Qp = 2,08 \times \frac{A}{Tp'} \tag{6.17}$$

A vazão é obtida em m³/s.

O tempo Tp', contado do inicio da precipitação, representa uma correção no tempo de pico para efeito de aplicação do método, sendo igual a:

$$Tp' = \frac{t_r}{2} + 0.6 \cdot t_c \tag{6.18}$$

onde tr = duração da precipitação, em horas; tc = tempo de concentração em horas.

Sendo recomendado que o tempo de concentração da bacia seja calculado pela seguinte fórmula:

$$t_c = 0.95 \left(\frac{L^3}{D}\right)^{0.385}$$
 (horas) (6.19)

$$th = 1,67tp'$$
 (6.20)

$$tb = th + tp' \tag{6.21}$$

O tempo de concentração pode ser também estimado, ainda, por dois procedimentos diferentes:

 a) inicialmente verifica-se qual o caminho entre o ponto mais extremo da bacia e a seção principal. Para cada trecho desse caminho com características diferentes, pode-se calcular a velocidade com base na declividade, segundo a expressão:

$$v = a s^{1/2}$$
;

sendo:

- s= declividade em %
- coeficiente <u>a</u> dado pela Tabela 6.4.

O tempo de cada trecho será t=L/v, onde L=comprimento e v=velocidade.

Para os trechos em canais, utilize a equação de Manning com a profundidade da seção de extravasamento.

Tipo de cobertura	a
Floresta com solo coberto de folhagem	0,25
Área sem cultivo ou pouco cultivo	0,47
Pasto e grama	0,71
Solo quase nu	1,00
Canais com grama	1,51
Superficie pavimentada	2,00

Tabela 6.4 – Velocidade para Superfícies

b) Considerando a equação para o tempo de pico tp a seguinte

$$t_{p} = \frac{2.6 \cdot L^{0.8} \left(\frac{S}{25.4} + 1\right)^{0.7}}{1900 \cdot v^{0.5}}$$
(6.22)

onde S é obtido pela equação 5.8 do Capítulo 5; L= comprimento hidráulico em metro; y= declividade em percentagem. O tempo de concentração pode ser obtido pela relação **tp= 0,6 tc**. A expressão acima foi apresentada pelo SCS para uso em bacias de até 8 Km².

O tempo de concentração se modifica com a alteração da cobertura da bacia, principalmente devido à urbanização. SCS (1975) apresenta modificação nos termos da Equação 6.20, quando ocorre urbanização da bacia.

Na figura abaixo é apresentada a relação entre fl, fator de correção devido a modificação no comprimento hidráulico e a percentagem do comprimento modificada.

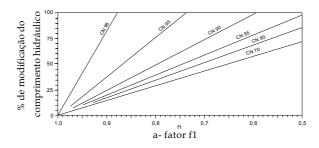


Figura 6.11a - fator de correção f1

A seguir é apresentada a relação entre o fator de correção f2 e a percentagem de área impermeável. O tempo de concentração calculado com base na Equação 6.20 é corrigido pela multiplicação dos fatores f1 e f2.

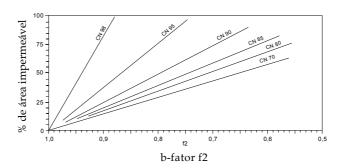


Figura 6.11b – fator de correção f2

Para facilitar o calculo, SCS apresentou um hidrograma adimensional em função da vazão de pico e tempo de pico. Conhecidos esses valores, pode-se determinar o hidrograma unitário utilizando os fatores da Tabela 6.5, que estão, também, representados no gráfico abaixo para melhor esclarecimento.

t/tp	Q/qp	t/tp	Q/qp	t/tp	Q/qp
0,1	0	0,2	0,015	0,3	0,075
0,4	0,16	0,5	0,28	0,6	6,430
0,7	0,60	0,8	0,77	0,9	0,890
1,0	0,97	1,1	1,00	1,2	0,989
1,3	0,92	1,4	0,84	1,5	0,750
1,6	0,66	1,8	0,56	2,0	0,420
2,2	0,32	2,4	0,24	2,6	0,180
2,8	0,13	3,0	0,098	3,5	0,075
4,0	0,036	4,5	0,018	5,0	0

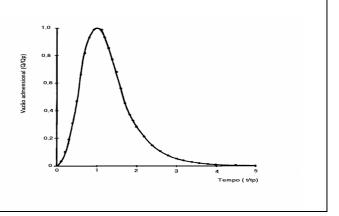


Tabela 6.5 – HU Adimensional

Exemplo: uma bacia rural com 7 Km², com cobertura de pasto (CN=61), tem comprimento de 2,5 Km e declividade de 8%. Esta bacia deve ser alterada para uma bacia urbana com 30% de áreas impermeáveis, alterando 75% do seu rio. Estime as características do HU para as condições atuais e futuras. Adote CN=83 para as condições urbanas.

Solução:

a) condições atuais:

S=
$$(25400/61)$$
-254=162,4
Tp= 2,6 $(2500)^{0.8}$ $(162,4/25,4+1)^{0.7}/(1900.8^{0.5})$ = 1,026 hr. tc= tp/0,6=1,71 hr.

Para uma duração de precipitação de 15 min ou 1h/4, $t^2p = 0.25/2 + 1.026 = 1.15 \text{ hr}$ $qp = 2.08.7/1.15 = 12.65 \text{ m}^3/\text{s}.$

b) condições futuras:

S=
$$(25400/83)$$
-254 = 52,0
Tp= 2,6 $(2500)^{0.8}$ $(52/25,4+1)^{0.7}$ /(1900. 8 0.5)=0,55 h

Corrigindo esse fator para f1=0,59 e f2=0,835, obtidos nas Figuras 6.11, resulta

$$\begin{array}{l} tp = 0.55.\ 0.59\ .\ 0.835 = 0.27\ h.\\ tc = 0.27/0.6 = 0.45\ hr\\ T'p = 0.25/2 + 0.27 = 0.40\ hr\\ qp = 2.08\ .\ 7/0.40 = 36.4\ m^3/s. \end{array}$$

6.9 Transposição de Hidrograma Unitário

Quando num local de interesse não existem dados para a determinação do HU, mas numa bacia vizinha com características semelhantes há disponibilidade de dados que permita ajustar o HU, a transposição pode ser realizada utilizando o seguinte procedimento:

- a) determinação do HU da bacia com dados;
- b) determinação dos valores de A, L, Lc, tp e Qp da bacia com dados;
- c) determinação dos coeficientes Ct e Cp desta bacia com base em L:

$$C_t = \frac{t_p}{\left(L \cdot L_c\right)^{0.7}} \tag{6.21}$$

$$C_p = \frac{q_p \cdot t_p}{2,75 \cdot A} \cdot \tag{6.22}$$

d) determinação de L, Lc e A da bacia de interesse e utilização do Ct e Cp da bacia vizinha para determinar os valores de tp, tr e Qp.

QUESTIONÁRIO

- 1. O que é o coeficiente de run-off e qual a sua fórmula?
- 2. Descreva o hidrograma de escoamento. Diga o que representa:
 - a) escoamento superficial
 - b) escoamento de base
- 3. Descreva os procedimentos utilizados para a elaboração do hidrograma, pelos métodos:
 - a) método de Snyder
 - b) método do Soil Conservation Service SCS